00P In Python

To map with real world scenarios, we started using objects in code.

This is called object oriented programming.

Class & Object in Python

Class is a blueprint for creating objects.

class Student:

name = “karan kumar”

s1 = Student()

print(s1.name)

Class & Instance Attributes

Class.attr
obj.attr

_Init__ Function

Constructor

All classes have a function called _init_(Q), which is always executed when the object is being
Initiated.

class Student: s1 = Student(“karan™)
def _ _init_ _(self, fullname): orint(s1.name)

self.name = fullname

*The self parameter is a reference to the current
instance of the class, and is used to access variables

that belongs to the class.

Methods

Methods are functions that belong to objects.

class Student: s1 = Student(“karan”)
def __init__(self, fullname): s1.hello()

self.name = fullname

def hello(self):

print(“hello”, self.name)

Let‘s Practice

Create student class that takes name & marks of 3 subjects as arguments in constructor.
Then create a method to print the average.

Static Methods

Methods that don’t use the self parameter (work at class level)

class Student:
@staticmmethod
def college():
print("ABC College”)

*Decorators allow us to wrap another function in order to
extend the behaviour of the wrapped function, without
permanently modifying it

Important

Abstraction

Hiding the implementation details of a class and only showing the essential features to the user.

Encapsulation

Wrapping data and functions into a single unit (object).

Let‘s Practice

Create Account class with 2 attributes - balance & account no.
Create methods for debit, credit & printing the balance.

